Lessons learned…
(during 30 years of hybrid-coordinate modeling)

Rainer Bleck
NASA/GISS and NOAA/ESRL
June 2009
Original motivation for this work

• Rossby was bothered by feature tracking problems on constant-height surfaces.
• Shuman believed that vertical advection terms ruin numerical stability.
• Everyone likes models that do a decent job resolving fronts.
• On fixed grids,
 - wave-induced vertical advection smears out vertical property contrasts;
 - horizontal transport & eddy mixing can have a false diapycnal component.
Computers get faster over time.

Aside from that, modeling is a zero-sum game. You gain a few points here, you lose some there.

For example:

“Isentropic models provide vertical resolution where it is needed most.”

Yes, but you pay a price for the resulting uneven grid spacing.
Diapycnal diffusivity implied by stratification trends

Start from

\[
\left(\frac{\partial \theta}{\partial t} \right)_z = \frac{\partial}{\partial z} \left(\kappa \frac{\partial \theta}{\partial z} \right)
\]

Switch role of \(z, \theta \) as dependent/independent variables:

\[
\left(\frac{\partial z}{\partial t} \right)_\theta = -\frac{\partial}{\partial \theta} \left(\kappa \frac{\partial \theta}{\partial z} \right)
\]

Discretize:

\[
2 \frac{z_{k+1/2}^{n+1} - z_{k-1/2}^n}{\partial t} = - \left(\kappa_k \frac{\theta_{k+1} - \theta_{k-1}}{t} \right) - \kappa_{k-1} \frac{\theta_k - \theta_{k-2}}{t \frac{z_{k+1/2} - z_{k-1/2}}{t}}
\]

Now solve for \(\kappa \)
Interface movement required to restore density (dashed) to target (solid) can lead to **this much** diffusion.
Diapycnal diffusivity implied by stratification trends

Start from

\[
\left(\frac{\partial \theta}{\partial t} \right)_z + \frac{\partial F}{\partial z} = 0 \quad \text{where} \quad F = -\kappa \frac{\partial \theta}{\partial z}
\]

Integrate over \(z \) and discretize in time:

\[
F(z) = \frac{1}{t_{n+1} - t_n} \left[\left(\int_{\text{btm}}^{z} \theta \, dz' \right)^{n+1} - \left(\int_{\text{btm}}^{z} \theta \, dz' \right)^n \right] + F_{\text{btm}}
\]

Now solve for \(\kappa \):

\[
\kappa(z) = -F(z) \frac{\partial z}{\partial \theta}
\]
Comparison of 2 grid generators in coupled model
Top row: hybgn1
Bottom row: hybgn3

SST mnth 3 – mnth 0
SST mnth 6 – mnth 0
SST mnth 9 – mnth 0
SST mnth 12 – mnth 0
Comparison of 2 grid generators in coupled model: year 100

left: hybgn1
right: hybgn3

green: warming;
brown: cooling;
red hatching: isopycnals descending;
blue hatching: isopycnals ascending
The diagram illustrates the density variations ρ_i with depth z for summer and winter conditions. The density layers are labeled as ρ_1, ρ_2, ρ_3, and ρ_4. For winter, the density profile shows a significant increase in density compared to summer, indicating a more stable stratification.
Certain things are easier in z coordinate models.

u,v are always the Cartesian velocity components, regardless of your model’s vertical coordinate.

Hence, the pressure gradient term must always mimic the gradient of p at constant z, $\nabla_z p$.
General recipe: \[
\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = \frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_s + g \left(\frac{\partial z}{\partial x} \right)_s
\]

The 2-term expression on the right reduces to a single term if one of the following conditions is met:

(a) \(s = z \)
\[
\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = \frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z
\]

(b) \(s = p \)
\[
\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = g \left(\frac{\partial z}{\partial x} \right)_p
\]

(c) \[
\left(\frac{\partial p}{\rho} \right)_s = (\partial \Omega)_s \quad \frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = \frac{\partial}{\partial x} \left(\Omega + gz \right)_s
\]

(i.e. \(\left(\frac{\partial p}{\rho} \right)_s \) is an exact differential on \(s \) surface)
\[
\left(\frac{\partial p}{\partial \rho} \right)_s = \left(\partial \Omega \right)_s \\
\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = \frac{\partial}{\partial x} \left(\Omega + gz \right)_s
\]

Examples:

(c-1) \(s = s(\rho) \)
\[\Omega = \frac{p}{\rho} \]

(c-2) ideal gas with \(s = \theta \)
\[\Omega = c_p T \]

Counterexamples:

(c-3) \(s = z/z_{bot} \) ("sigma" coordinate)

(c-3) \(s = \rho_{pot} \) (isopycnic ocean models)
Finite volume approach:

\[
\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right)_z = \left(\frac{\partial p}{\partial s} \right)^{-1} \frac{\partial (\phi, p)}{\partial (x, s)}
\]

\[
\int \frac{\partial (\phi, p)}{\partial (x, s)} \, dx \, ds = \oint \phi \, dp - \oint p \, d\phi
\]
Thermobaricity is numerically problematic because it spawns a second term in the horizontal PGF expression.

It is mainly an issue in abyssal flows.

Despite the efforts of Sun et al. (1999) and Hallberg (2005), the problem has not been solved to everyone’s satisfaction.
Oceanographic Application

Isentropic charts lose in distinctness somewhat when applied to the ocean. In the first place, two samples of water of the same specific volume at one pressure do not in general have the same specific volume at another pressure....

In the second place, when two samples of the same specific volume but different temperature and salinity mix, the resulting mixture has a lesser specific volume than the original samples.

Thermobaricity: temperature dependence of the (adiabatic) compressibility coefficient $\rho^{-1} \partial \rho / \partial p$

$$\frac{\partial^2 \rho}{\partial p \partial T} \neq 0$$

Example of a non-thermobaric fluid: **ideal gas**

(1st Law =>) $c_v \frac{dp}{p} - c_p \frac{d\rho}{\rho} = 0 \quad \Rightarrow \quad 1 \frac{\partial \rho}{\rho} \frac{\partial p}{\partial p} = \frac{c_v}{c_p} \frac{1}{p}$

i.e., atmospheric compressibility depends **only** on p
Summary of recurring issues

- Vertical diffusion near z/ρ coord. interface
- Thermobaricity
- Subgridscale eddy mixing (Gent-McWilliams)
- z-coordinate-centric mixing schemes
- Lack of ideas on grid generator development
Model development will continue indefinitely

Man May Work from Sun to Sun But Woman’s Work is Never Done
The T/S/\(\rho \) conundrum in isopycnic-coordinate models

\(T, S, \rho_{pot} \) are materially conserved in adiabatic flow.

The three variables are related: \(\rho_{pot} = \rho_{pot}(T, S) \) and \(T, S \) are of similar importance.

Due to numerical errors and nonlinearities in the equation of state, \(T, S \) advection is unlikely to conserve \(\rho_{pot} \).

This is extremely inconvenient in models using \(\rho_{pot} \) as independent variable.